\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\) [69]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 150 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^3 d}+\frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \]

[Out]

2/3*B*sin(d*x+c)/b^2/d/(b*sec(d*x+c))^(1/2)+2/5*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli
pticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d/cos(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)+2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b^3/d+2/5*A*
tan(d*x+c)/d/(b*sec(d*x+c))^(5/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4132, 3854, 3856, 2720, 4130, 2719} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^3 d}+\frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*B*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*b^3*d) + (2*B*Sin[c + d*x])/(3*b^2*d*Sqrt[b*Sec[c +
 d*x]]) + (2*A*Tan[c + d*x])/(5*d*(b*Sec[c + d*x])^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}} \, dx}{b}+\int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx \\ & = \frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac {B \int \sqrt {b \sec (c+d x)} \, dx}{3 b^3}+\frac {(3 A+5 C) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx}{5 b^2} \\ & = \frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac {(3 A+5 C) \int \sqrt {\cos (c+d x)} \, dx}{5 b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^3} \\ & = \frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^3 d}+\frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.20 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.13 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {e^{-i d x} \sqrt {b \sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (10 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-2 i (3 A+5 C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (6 i (3 A+5 C)+10 B \sin (c+d x)+3 A \sin (2 (c+d x)))\right )}{15 b^3 d} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]

[Out]

(Sqrt[b*Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*(10*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (2*I)*(3*A
+ 5*C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] +
Cos[c + d*x]*((6*I)*(3*A + 5*C) + 10*B*Sin[c + d*x] + 3*A*Sin[2*(c + d*x)])))/(15*b^3*d*E^(I*d*x))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.69 (sec) , antiderivative size = 956, normalized size of antiderivative = 6.37

method result size
parts \(\text {Expression too large to display}\) \(956\)
default \(\text {Expression too large to display}\) \(1004\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/5*A/d/(cos(d*x+c)+1)/(b*sec(d*x+c))^(1/2)/b^2*(3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*cos(d*x+c)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*cos(d*x+c)+6*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)-6*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Elli
pticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)+cos(d*x+c)^2*sin(d*x+c)+sin(d*x+c)*cos(d*x+c)+3*sin(d*x+c))
-2/3*B/d/(b*sec(d*x+c))^(1/2)/b^2*(I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-
cot(d*x+c)+csc(d*x+c)),I)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c
)+csc(d*x+c)),I)*sec(d*x+c)-sin(d*x+c))+2*C/b^2/d/(cos(d*x+c)+1)/(b*sec(d*x+c))^(1/2)*(I*EllipticE(I*(-cot(d*x
+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-I*EllipticF(I*(-cot(d
*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+2*I*(1/(cos(d*x+c)+
1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)-2*I*(1/(cos(d*x+c)+1))^(1/
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)+sin(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.17 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {-5 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, A - 5 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, A + 5 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, A \cos \left (d x + c\right )^{2} + 5 \, B \cos \left (d x + c\right )\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, b^{3} d} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*sqrt(b)
*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-3*I*A - 5*I*C)*sqrt(b)*weierstrassZet
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(3*I*A + 5*I*C)*sqrt(b)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*A*cos(d*x + c)^2 + 5*B*cos(
d*x + c))*sqrt(b/cos(d*x + c))*sin(d*x + c))/(b^3*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(b*sec(c + d*x))**(5/2), x)

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(5/2), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2), x)